
CM
CVI

cy>

IMPROVING INTRUSION DETECTION

IN UNIX-BASED NETWORKS

THESIS
David R. Landry

2LT, USAF

AITT/GCS/ENCJ/'MD-M

tffc
fXEBTBIBUTICR ITATIlCEMfT V

JLpptwd tot
Olflti ll/udon UoBxBftod

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

AFIT/GCS/ENG/94D-14

IMPROVING INTRUSION DETECTION

IN UNIX-BASED NETWORKS

THESIS
David R. Landry

2LT, USAF

AFIT/GCS/ENG/94D-14

Approved for public release; Distribution Unlimited

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
December 1994

3. REPORT TYPE AND DATES COVERED
Master's Thesis

4. TITLE AND SUBTITLE

IMPROVING INTRUSION DETECTION
IN UNIX-BASED NETWORKS

AUTHOR(S)
David R. Landry, 2nd Lieutenant, USAF

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Air Force Institute of Technology, WPAFB OH 45433-6583

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

5. FUNDING NUMBERS

PERFORMING ORGANIZATION
REPORT NUMBER

AFIT/GCS/ENG/94D-14

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)
Computer security has not kept pace with the rapid growth of networked systems. Through its connection to
the Internet, the Department of Defense is vulnerable to computer-based attacks. Current intrusion detection
systems are still unproven, too complicated, or too costly for most system security officers to implement.
The attack methods used by system intruders are known and can be represented as groups of commands called
attack signatures. This thesis investigates methods for detecting intruders by monitoring command usage.
Testing was conducted in both controlled and uncontrolled circumstances.
With controlled testing, it was shown that 7 of the 11 signatures could be detected through command monitoring.
Command recording deficiencies prevented all 11 signatures from being detected. With uncontrolled testing, users
were monitored without their knowledge for one month. No actual attacks were observed, but there were 18
instances of false positives out of 145,066 monitored commands.
The implemented system was successful at detecting most attacks, with only a small percentage of false positives.
This thesis is an intermediate step in exploring methods to better protect Air Force systems from attack. Future
work should aim to detect attacks before they are fully completed by monitoring networks at the packet level.

14. SUBJECT TERMS
COMPUTER SECURITY; UNLX SECURITY; INTRUSION DETECTION

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE
UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT
UNCLASSIFIED

15. NUMBER OF PAGES
58

16. PRICE CODE

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

GENERAL INSTRUCTIONS FOR COMPLETING SF 298

The Report Documentation Page (RDP) is used in announcing and cataloging reports. It is important
that this information be consistent with the rest of the report, particularly the cover and title page.
Instructions for filling in each block of the form follow. It is important to stay within the lines to meet
optical scanning requirements.

Block 1. Agency Use Only (Leave blank).

Block 2. Report Date. Full publication date
including day, month, and year, if available (e.g. 1
Jan 88). Must cite at least the year.

Block 3. Type of Report and Dates Covered.
State whether report is interim, final, etc. If
applicable, enter inclusive report dates (e.g. 10
Jun87-30Jun88).

Block 4. Title and Subtitle. A title is taken from
the part of the report that provides the most
meaningful and complete information. When a
report is prepared in more than one volume,
repeat the primary title, add volume number, and
include subtitle for the specific volume. On
classified documents enter the title classification
in parentheses.

Blocks. Funding Numbers. To include contract
and grant numbers; may include program
element number(s), project number(s), task
number(s), and work unit number(s). Use the
following labels:

C
G
PE

Contract
Grant
Program
Element

PR
TA
WU

Project
Task
Work Unit
Accession No.

Block 6. Author(s). Name(s) of person(s)
responsible for writing the report, performing
the research, or credited with the content of the
report. If editor or compiler, this should follow
the name(s).

Block 7. Performing Organization Name(s) and
Address(es). Self-explanatory.

Block 8. Performing Organization Report
Number. Enter the unique alphanumeric report
number(s) assigned by the organization
performing the report.

Block 9. Sponsoring/Monitoring Agency Name(s)
and Address(es). Self-explanatory.

Block 10. Sponsoring/Monitoring Agency
Report Number. (If known)

Block 11. Supplementary Notes. Enter
information not included elsewhere such as:
Prepared in cooperation with...; Trans, of...; To be
published in.... When a report is revised, include
a statement whether the new report supersedes
or supplements the older report.

Block 12a. Distribution/Availability Statement.
Denotes public availability or limitations. Cite any
availability to the public. Enter additional
limitations or special markings in all capitals (e.g.
NOFORN, REL, ITAR).

DOD - See DoDD 5230.24, "Distribution
Statements on Technical
Documents."

DOE - See authorities.
NASA- See Handbook NHB 2200.2.
NTIS - Leave blank.

Block 12b. Distribution Code.

DOD - Leave blank.
DOE - Enter DOE distribution categories

from the Standard Distribution for
Unclassified Scientific and Technical
Reports.

NASA- Leave blank.
NTIS - Leave blank.

Block 13. Abstract. Include a brief (Maximum
200 words) factual summary of the most
significant information contained in the report.

Block 14. Subject Terms. Keywords or phrases
identifying major subjects in the report.

Block 15. Number of Pages. Enter the total
number of pages.

Block 16. Price Code,
code (NTIS only).

Enter appropriate price

Blocks 17.-19. Security Classifications. Self-
explanatory. Enter U.S. Security Classification in
accordance with U.S. Security Regulations (i.e.,
UNCLASSIFIED). If form contains classified
information, stamp classification on the top and
bottom of the page.

Block 20. Limitation of Abstract. This block must
be completed to assign a limitation to the
abstract. Enter either UL (unlimited) or SAR (same
as report). An entry in this block is necessary if
the abstract is to be limited. If blank, the abstract
is assumed to be unlimited.

Standard Form 298 Back (Rev. 2-89)

*U.S.GPO:1990-0-273-271

The views expressed in this thesis are those of the author and do not

reflect the official policy or position of the Department of Defense or

the U.S. Government.

Accession For

RSIS GRA&I O
mic TAB o
Una*u>euneeifl O
JttStUfIcatioM i

By —y-

Availability Ceäea
Avail esd/or

list

A
<«£. L

AFIT/GCS/ENG/94D-14

IMPROVING INTRUSION DETECTION

IN UNIX-BASED NETWORKS

THESIS

Presented to the Faculty of the Graduate School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science (Computer Science)

David R. Landry, B.S.C.S.

2LT, USAF

December 1994

Approved for public release; Distribution Unlimited

Table of Contents

Page

List of Figures v

List of Tables vi

Abstract vii

I. Introduction 1-1

1.1 Background 1-1

1.2 Problem Statement 1-2

1.3 Rationale / Benefits 1-3

1.4 Scope 1-3

1.5 Methodology 1-4

1.6 Executive Overview 1-5

II. Background 2-1

2.1 UNIX Logging Facilities 2-1

2.1.1 UNIX Accounting 2-1

2.1.2 UNIX Auditing 2-4

2.1.3 UNIX Logging Summary 2-5

2.2 Intrusion Detection Systems 2-5

2.2.1 Stalker 2-5

2.2.2 POLYCENTER Security Intrusion Detector 2-6

2.2.3 NIDES 2-6

2.2.4 Multics Intrusion Detection and Alerting System . . 2-8

2.2.5 Distributed Intrusion Detection System 2-8

2.3 Current Security State 2-10

2.4 Summary 2-11

ii

Page

III. System Design 3-1

3.1 System Goals 3-1

3.2 Implementation Decisions 3-1

3.2.1 Obtaining Command Information 3-2

3.2.2 Processing Command Information 3-2

3.2.3 Detecting Intrusions 3-3

3.2.4 Presenting the Security Data 3-4

3.3 Summary 3-5

IV. Design Implementation 4-1

4.1 Data Collection 4-1

4.2 Data Filtering 4-1

4.3 Feature Selection 4-3

4.4 Data Analysis 4-4

4.5 Intrusion Detection 4-5

4.6 User Profile 4-6

4.7 Security Report 4-8

V. Results 5-1

5.1 Controlled Testing 5-1

5.2 Uncontrolled Testing 5-2

5.3 Accounting Log Shortcomings 5-4

5.4 Results Summary 5-6

VI. Conclusion 6-1

6.1 Contributions 6-1

6.2 Future Work 6-2

6.3 Closing Thoughts 6-4

in

Page

Appendix A. Attack Signatures A-l

A.l The rdist Attack A-l

A.2 The crash Attack A-l

A.3 The loadmodule Attack A-2

A.4 The expreserve Attack A-3

A.5 The sync Attack A-3

A.6 The trusted hosts Attack A-4

A.7 The xkey Attack A-5

A.8 The mount Attack A-5

A.9 The brute force Attack A-6

A.10 The ftp Attack A-6

A.ll The loadkeys Attack A-7

A.12 Summary A-7

Bibliography BIB-1

Vita VITA-1

IV

List of Figures

Figure Page

1.1. Widespread DOD network intrusion 1-2

2.1. Berkeley UNIX security messages 2-3

List of Tables

Table Page

2.1. Four UNIX log files 2-1

4.1. Unfiltered lastcomm generated accounting log 4-2

4.2. Filtered lastcomm generated accounting log 4-3

4.3. Most common commands in accounting log 4-4

4.4. Commands contained in user profile categories 4-7

4.5. A portion of a security report 4-8

5.1. Profile of total system activity 5-4

5.2. Lost information in lastcomm generated log 5-5

A.l. rdist Attack Signature A-l

A.2. crash Attack Signature A-2

A.3. loadmodule Attack Signature A-2

A.4. expreserve Attack Signature A-3

A.5. sync Attack Signature A-4

A.6. trusted hosts Attack Signature A-4

A.7. xkey Attack Signature A-5

A.8. mount Attack Signature A-5

A.9. brute force Attack Signature A-6

A.10. ftp Attack Signature A-6

A.ll. loadkeys Attack Signature A-7

VI

AFIT/GCS/ENG/94D-14

Abstract

Computer security has not kept pace with the rapid growth of networked systems.

Through its connection to the Internet, the Department of Defense is vulnerable to computer-

based attacks. Current intrusion detection systems are still unproven, too complicated, or

too costly for most system security officers to implement.

The attack methods used by system intruders are known and can be represented as

groups of commands called attack signatures. This thesis investigates methods for detect-

ing intruders by monitoring command usage. Testing was conducted in both controlled

and uncontrolled circumstances.

With controlled testing, it was shown that 7 of the 11 signatures could be detected

through command monitoring. Command recording deficiencies prevented all 11 signa-

tures from being detected. With uncontrolled testing, users were monitored without their

knowledge for one month. No actual attacks were observed, but there were 18 instances of

false positives out of 145,066 monitored commands.

The implemented system was successful at detecting most attacks, with only a small

percentage of false positives. This thesis is an intermediate step in exploring methods to

better protect Air Force systems from attack. Future work should aim to detect attacks

before they are fully completed by monitoring networks at the packet level.

Vll

IMPROVING INTRUSION DETECTION

IN UNIX-BASED NETWORKS

/. Introduction

1.1 Background

The United States Air Force, along with other members of the Department of Defense

(DOD), has always been interested in safeguarding its communications traffic. Much of

this traffic today travels along the Internet, a connection of over 30,000 computer networks

involving over 25 million people who live in 137 countries. Although classified information

does not travel over the Internet, the U.S. Air Force is still concerned about unauthorized

use of government computer equipment.

DOD computers around the world are being compromised on a weekly basis through

their connections to Internet. This problem has become so serious that a former DOD

official was quoted in Federal Computer Week as saying, "... on any given day DOD

literally does not have control of five or six of its computer systems; the hackers do" (4).

Figure 1.1 shows the U.S. military sub-networks which are known to have been attacked

(4).

The unauthorized users are penetrating the system down to the root level. Root is

the level at which a system administrator operates on a UNIX1 system. Anyone acting as

root has broad powers over the whole network such as the ability to read or write any file

or assume the identity of any user on the network.

There are few security tools with which a system administrator can actively look

for intruders (15, 23). In fact, most hackers are still discovered passively. A report

presented at the 13th National Computer Security Conference in October 1990 noted,

"Sixty percent of the sites that suffer intrusions learn about the problem only when other

sites or the CERT/CC (Computer Emergency Response Team / Coordination Center)

1UNIX is a registered trademark of AT&T

1-1

Department of Defense .mil Network Nodes

(

(

.af

.afip

.arl

.aimy

.aipa

.brl

.centcom

.dia

.dis

.disa

.usace

.uscg

.usmc

.usna

(

I
(

.navy]

.ncsc |

.nose]

.nsa

.ochampus

.osd

.osia

.pacom

.sac

1 .dla]

.dma

.dna

.dsaa

.dsm

.eucom

.iirdsfcva

I .usuhs J

.darpa

.dca
)

.ddn

.deca

.dfas

) (.sdio]

.soc

.socom
(.jcs

•j»
)

CZZD known site of hacker attack

Figure 1.1 Widespread DOD network intrusion.

notify them" (26). Another incident report on intrusions at Columbia University states,

"a major component of detection can be attributed to pure luck" (1).

Methods of detecting intrusions should be more scientific than relying on luck. The

Air Force Information Warfare Center (AFIWC) has observed network intrusions on a first

hand basis. Their emergency response team is responsible for dealing with Air Force wide

computer attacks. Their knowledge of intrusion techniques has resulted in the formulation

of attack signatures. A possible computer intrusion can be characterized as a set of UNIX

commands or network activity which results in the attacker getting unauthorized access

to a DOD system.

These attack signatures will form the basis of this thesis. By scanning for attacks

on a regular basis, system administrators can play a more active role in securing their

systems.

1.2 Problem Statement

DOD computers are being penetrated at an alarming rate. The information and

systems needed to detect these intrusions are not being utilized by system administrators.

1-2

A tool is needed to help a Computer Emergency Response Team (CERT) quickly find

network intruders by searching for attack signatures.

1.3 Rationale / Benefits

Computer security is of the utmost importance throughout the Department of De-

fense. The military has a continual reliance on information systems and networks for the

processing of both classified and unclassified data. Network downtime caused by attacks

costs the DOD millions of dollars and the betrayal of sensitive government information.

A 1991 report completed for the U.S. Air Force states "much research and develop-

ment needs to be done before intrusion detection will be generally available" (22). It is

now 1994 and intrusion detection systems are still not widely available. One of the goals

of this thesis is to develop a system which is portable and easy to use. The report explains

further that "by far, the most difficult task is to analyze the auditing data" (22). This

thesis will continue experimentation into effectively analyzing gathered data.

1.4 Scope

The goal of this thesis effort is to create a system to detect computer intrusions in

UNIX-based networks. UNIX is a common operating system for many of the workstation

networks that are popular throughout the DOD. A majority of the networks connected to

the Internet today are UNIX-based. This thesis is concerned with safeguarding unclassified

systems which often lack the audit capabilities of classified systems.

Intrusions will be detected by filtering the user commands generated on the network.

The primary method for detecting intrusions will be matching commands against attack

signatures. This method will be supplemented by analyzing commands for large amounts

of CPU usage, monitoring password changes, and profiling each user by his command use.

Users who have commands that match the attack signatures will be reported to the system

administrator. He can then take whatever action is appropriate, such as monitoring the

user further or turning off the compromised account.

1-3

1.5 Methodology

Many methods of gaining access to a network or penetrating to the root level are

known. The purpose of this thesis effort is to research and build a tool that actively looks

for network intruders. The tool should be easy to run and provide all the necessary data

a system administrator requires to assess the current security state of his network.

The program uses data collected from accounting logs of UNIX commands issued by

each user on the network. The CPU time used to process each command is also part of

this data. This data is analyzed in four different ways to look for intrusions.

The main intrusion detection method is to look for known attack techniques such

as trying to gain root permissions, stealing password information, or denying computer

service to others. The program scans all recorded commands looking for matching attack

signatures.

The second method is to look for users changing their passwords. This does not

appear to be a problem on the surface, but a large number of password changes could

indicate a hacker present on the network. This is referred to as a command and control

problem by the AFIWC, and will be explained in greater detail in Chapter III.

The third method reports the commands or programs that consume the most process-

ing time. The hackers of today are using sophisticated, automatic tools such as password

crackers. Many of these tools use large amounts of CPU time and can be singled out.

The fourth method used for intrusion detection is a simple account profiling system.

Each day, users generate a unique profile by their use of UNIX, Internet, programming,

and editor commands. The profiling feature helps the system administrator monitor users

for indications of the propagation of a virus or a stolen account.

Each day the network security program runs automatically and reports its findings

to the system administrator. The system administrator can then take immediate action

with the results. The first method used by the program searches for intruders utilizing

known attack techniques. The last three methods can be used by the system administrator

to spot trends which may indicate a security breach. The program can also be used by a

CERT to identify the user who is performing network intrusions.

1-4

The security program shows resistance to false positives (attacks that do not exist).

By analyzing the command usage of 109 ordinary network users, the researcher has been

able to show that attack signatures are limited to those people who are actually performing

attack-type behavior. After one month of testing, most of the attack alarms that occurred

could be attributed to the system administrator performing routine operations.

1.6 Executive Overview

Computer security must evolve to keep up with society's growing reliance on intercon-

nected systems. System administrators are lacking the necessary tools to actively search

for intruders. CERTs need additional tools to find network attackers. Most intruders are

still being discovered by accident.

This thesis work provides a tested tool that searches for UNIX-based network attacks

using four different methods. The program runs automatically each day and provides the

system security officer with an easy-to-read security report. It will allow him or her to

more easily and actively spot network intruders.

The remainder of this report explains the security tool in detail. Chapter II is a liter-

ature review discussing UNIX command logging features and documenting current research

and commercial efforts in intrusion detection. Chapter III provides a top-level system de-

sign, explaining key implementation decisions. Chapter IV gives a detailed explanation of

the design implementation. Chapter V reviews the collected data and presents an in-depth

discussion of my findings. Finally the thesis concludes with Chapter VI, which shows the

final result that a simple tool can be built to improve intrusion detection in UNIX-based

networks.

1-5

II. Background

This chapter is a literature review. First, there is a review of UNIX accounting and

auditing tools. Next, some advanced intrusion detection systems are presented. Each sys-

tem will be presented with its features and shortcomings. With the shortcomings identified,

a security tool can be build to address them.

2.1 UNIX Logging Facilities

There are two types of UNIX logging: accounting and auditing. Accounting has

always been a part of UNIX. Its primary purpose was to record computer use for admin-

istrative purposes, but it can be used to aid with security. Auditing features are a recent

addition to most UNIX-based operating systems. Auditing is designed to aid with enforc-

ing computer security, but there is no standard recording format and it is expensive to

implement with regard to disk space. The next two sections will describe accounting and

auditing in more detail.

Filename Meaning
/usr/adm/lastlog Logs the last time a user logged in

/etc/utmp Logs current users on the network
/usr/adm/wtmp Logs the time a user starts and ends a session
/usr/adm/acct Logs each command run by every user on the system

Table 2.1 Four UNIX log files.

2.1.1 UNIX Accounting. Basic UNIX log files can be used by a system admin-

istrator to identify possible intruders. The four primary UNIX accounting files which can

be used for aiding with security are identified in Table 2.1 (12). The first two log files in

the list store user times for accessing the system. The information provided by both these

logs is duplicated in the third log. Because this duplication exists, only the last two logs

in the table will be explained in detail.

2-1

The wtmp log can be used to identify a user logging in at a peculiar time. For example

if Airman Smith works a day shift at a data processing facility, his system access times

should be between 8 am and 5 pm. A login at 2 am on the weekend could be interpreted as

an intruder masquerading as Airman Smith. This interpretation would have to be made

by the system administrator reading the file or utilizing a separate program to process this

information.

The acct log can be used to monitor commands run by the system users. The acct

log can generate specific files by accessing it through the use of the lastcomm command.

Accurately monitoring commands is an important part of this thesis. The basis of attack

signatures is that intruders utilize commands in a certain order to exploit UNIX security

loopholes. A problem with the acct log is that it does not record the command line switches

or arguments which accompany some commands (12). Argument information is necessary

to recognize some attack signatures.

The biggest disadvantage to both logs is the lack of an intelligent security monitoring

capability. Separate tools are required to intelligently process these files. Another problem

is the rate at which these files grow. The acct log alone grows at a rate of approximately

4K for each user during one day for each computer being used, which makes it impossible

for an unaided system administrator to read. Many system administrators do not use

accounting at all because they do not want to sacrifice the disk space which could be used

for "better things".

Another form of command logging occurs at the user level. Each shell usually has an

automatic command history which can be accessed through the history command. This

shows all information that was entered at the command line including file objects and

arguments.

An associated file is automatically kept for each user called .history. This file is

updated on a sporadic basis showing portions of past command sequences. Its reliability

at accurately recalling all past commands is questionable. This is because these files may

be freely accessed, customized, and modified by individual users.

2-2

Another problem with using any type of files related to history command output for

computer security purposes is that the commands must be antialiased. An alias is a UNIX

feature in which a user can redefine a command to be another name. Attack signatures rely

on recognizing certain command sequences, so aliased commands present a major problem.

Unlike .history logs, acct does not show aliased commands. The actual antialiased

command is recorded in the log. This is a very important feature of accounting at the

system level.

Command Message Condition

reboot
halt
shutdown

reboot, halt, or shutdown by

<user> on <tty>

<user> used the etc/reboot, halt, shutdown
to reboot, halt, shutdown the system

login ROOT LOGIN REFUSED ON root tried to log onto a terminal
<tty> [FROM <hostname>] that is not secure

login REPEATED LOGIN FAILURES
ON <tty> [FROM <hostname>]

<user>

Somebody tried to log in as
<user> and supplied a bad

password more than 5 times

login ROOT LOGIN <tty>
[FROM <hostname>]

root logged in

login dialup <tty> <user> The user <user> logged in on
the dialup line <tty>

su BAD SU <user> on <tty> Somebody tried to su to the
superuser and did not supply
the correct password

su <user> on <tty> <user> used the su
command to become
superuser

Figure 2.1 Berkeley UNIX security messages.

Berkeley UNIX provides another logging program called syslog. Certain system pro-

grams can generate messages for the log. The auth facility in syslog monitors programs

2-3

asking for authorization. These are the commands that are frequent targets of intruders.

The conditions that trigger command warnings are listed in Figure 2.1 (12).

The UNIX command sa provides an important security feature. It produces a list of

several facts about each command including: memory used, number of times invoked, and

CPU time used (8). This listing can be used to spot CPU time-intensive programs such

as password crackers or be scanned for commands appearing in attack signatures.

2.1.2 UNIX Auditing. Most of the files and features described in the last section

were incorporated into UNIX for accounting purposes, not security purposes. Security

auditing refers to a more detailed level of monitoring the actions of system users. UNIX

provides the basis for many companies' operating systems, but each company has its own

version. Because of this, there is no standard auditing format or method used in UNIX

systems.

However, some of these auditing methods are worth reviewing. Sun Microsystems

distributes C2 Security with versions 4.0 and higher of SunOS. C2 Security is an improve-

ment over system accounting such as that provided by the acct log. Besides recording

the commands executed, it can record the files accessed and the success or failure of a

command (10).

Digital Equipment also adds a higher level of auditing in its ULTRIX operating

system. Its features are similar to the Sun auditing. In addition to Sun and Digital, there

are many third-party vendors who provide their own versions of auditing packages, such

as Computer Associates, Open Vision, and Systems Center (15).

The disadvantage of auditing is that the amount of information that needs to be

processed exceeds that of system accounting. Each command needs a different amount of

disk space to record its effects. For example, "a find command searching for executable

files would generate megabytes of data if started in the /usr directory" (10).

UNIX auditing is less standardized than UNIX accounting. Each operating system

manufacturer has its own method. In addition, many network administrators do not use

system auditing because of the extra disk space required to monitor users.

2-4

2.1.3 UNIX Logging Summary. Basic UNIX accounting and auditing features

can record system activity but cannot actively find computer intruders. The amount of

basic data which needs to be processed by the system administrator can easily overwhelm

him. Frequently the only way to determine an attack has occurred is to watch for its

effects: slow system response time, new unauthorized accounts, or file changes. Better

methods are needed to monitor for intruders and automatically process the data collection

logs.

2.2 Intrusion Detection Systems

The next subsections describe current research and commercial efforts in the area of

intrusion detection. All the systems run on some form of UNIX operating system or may

be soon be ported to a UNIX operating system. A review of current systems is beneficial

for showing the capabilities that can be achieved as well as areas which require further

exploration in this thesis.

2.2.1 Stalker. Stalker1 is a misuse detection tool developed by Haystack Labs.

It has three parts: a misuse detector, tracer/browser, and audit control unit (28). The

entire Stalker system is run from one computer which receives its input from audit trails

produced by the other computers on the network.

The misuse detector filters security data for signs of system misuse. This misuse

can be attributed to either external system penetrators or legitimate users performing

unauthorized actions. Stalker works by matching audit data against a large encrypted

database of misuse techniques. If a match is found, the system administrator can be

alerted via email or by using other notification techniques.

The tracer/browser part of Stalker allows a system administrator to selectively filter

the audit data. Daily reports and queries can be customized. These queries can be complex

such as, "Who was on machine X between lam and 3am?"

'Stalker is a registered trademark of Haystack Labs, Inc.

2-5

The audit control part of Stalker initializes auditing for each machine on the net-

work. The data is standardized into a form which is used by the misuse detector and

tracer/browser. Audit data includes the following information: time, event, process-ID,

success of event, user-ID, group-ID, session-ID, security-level, object description, and mis-

cellaneous data (28).

Stalker is a new tool. It was first shipped in late 1993. It is too early to determine

the success rate consumers have with the tool. Stalker is limited by restricting its filtering

to known attack techniques. The system is expensive, with prices starting at $15,000 a

network.

2.2.2 POLYCENTER Security Intrusion Detector. The POLYCENTER Secu-

rity Intrusion Detector is a product of the Digital Equipment Corporation. It is a real-time

monitoring program that must be installed on each machine needing protection. Audit in-

formation gathered on the host computer is filtered through a knowledge base to determine

if a security violation has occurred.

POLYCENTER monitors thirteen different events. This includes monitoring login

attempts, access to critical files, programs run with superuser status, and network file

transfers. The goal of this filtering is to review the audit information in ways similar to

an experienced computer security professional.

POLYCENTER works with ULTRIX and SunOS operating systems at a cost per

node of $400. Its reliability at catching intruders is unknown. A shortcoming of this

system includes no mechanism for detecting known intrusion methods.

2.2.3 NIDES. NIDES evolved from the IDES (Intrusion Detection Expert Sys-

tem) project at SRI. It is the result of over eight years of research in computer security.

NIDES monitors a network in real-time from a host system using two different techniques:

statistical analysis and rule-based analysis.

Each user of a NIDES-monitored network has a computer use profile associated

with him. Every time the user accesses the network a new session profile is created.

The type of behavior monitored includes: login and logout times, command execution,

2-6

directory changes, terminal use, file access, and network activity (21). This session profile

is compared against the historical profile of the user through statistical analysis. If the

NIDES system determines the user has changed drastically from his historical profile, an

alarm is raised. This could indicate an intruder masquerading as a legitimate user (20).

The historical profile is regularly updated to provide a better picture of a constantly

changing user. NIDES uses an aging process to slowly eliminate older data from the profile.

Recently collected user data has more precedence in determining if the current activity is

anomalous.

While the statistical analysis of user profiles can help guard a system against unknown

threats, rule-based analysis of network activity is designed to uncover known intrusion

methods. NIDES uses rules to identify activities known to be good indicators of attacks

such as access to the password file. If a user session triggers one of these rules in the expert

system, an alarm is raised.

One of the advantages of NIDES is the ability of an individual system administrator

to customize the system. He can alter the parameters of the statistical analysis to prevent

false positives. It is also possible to change the rule base of the expert system to identify a

new type of attack. These features are lacking in other intrusion detection systems (20).

NIDES is currently in the beta test phase. The only places this system has be used

is at SRI International where it was developed and at the FBI (13). Justin Lister, a

researcher at the Center for Computer Security Research at the Univerity of Wollongong

commented that, "Considering the amount of research in the IDES/NIDES systems, I

think we can safety assume that it will never be available to the masses (I may be wrong),

but I would think the complexities of the system would ensure it is out of reach of the

less experienced system administrators" (18). Lt Roth from the AFIWC also has doubts

about the ability to implement NIDES on most networks. "Everyone runs to avoid this

tool. It is based on anomaly detection, which currently does not work. It has a statistical

based approach as opposed to a signature based approach - which does not appear to be

as good" (24).

2-7

2.2.4 Multics Intrusion Detection and Alerting System. The Multics Intrusion

Detection and Alerting System (MIDAS) is a real-time intrusion detection system used

to watch over the Dockmaster network at the National Computer Security Center. It is

implemented on a Honeywell Multics mainframe to monitor the system's 1,200 users (27).

The security system uses both statistical inference and expert systems technologies.

MIDAS uses a number of sources to detect intruders. User commands and network

statistics are preprocessed into facts which are fed into the expert system engine. The

expert system uses current facts to trigger rules stored in a rule base. If an suspected

intrusion is detected, MIDAS will print a message on the system administrators console.

Rules are broken into three areas: immediate attack, user anomaly, and system state

(27). Immediate attack rules concern themselves with direct attack sequences. An example

of this is a normal user attempting to use superuser commands. User anomaly rules analyze

user sessions. Every time a user logs in, a session record keeps track of his or her actions.

These actions are used to modify a user profile record. If a particular user session varies

drastically from the usual profile, this will trigger a user anomaly rule. System state rules

look at the overall network. These rules can notice large trends such as a dramatic increase

in processing time across the entire network. This could indicate that an intruder is using

large amounts of CPU time to run a password cracking program.

MIDAS is powerful. By utilizing these three distinct rule areas, it can detect break-

ins, masqueraders, penetrations, misuse, and Trojan horses (27). One disadvantage of

MIDAS is that it has only been used at the National Computer Security Center. Another

disadvantage is that it was written with an in-house expert system. This limits the ability

of MIDAS to be portable and modifiable by others.

2.2.5 Distributed Intrusion Detection System. DIDS (Distributive Intrusion De-

tection System) is the joint effort of the University of California at Davis Computer Security

Laboratory, Haystack Laboratories, and the U.S. Air Force Cryptological Support Center.

It is designed to monitor a heterogeneous network of computers. DIDS uses a unique

approach to intrusion detection by monitoring at both the local and network levels.

2-8

Each computer on the network contains a host monitor. The host monitor filters

audit data from only the computer on which it is located. This filtering includes looking

for attack signatures (29). The purpose of the attack signature detector is to try to identify

certain command usage as attack-type behavior. An example of this is a user attempting

to erase all the system files.

Some audit data which is helpful for analyzing local events is also helpful for tracking

system-wide behavior. If the host monitor finds occurrences of notable events, such the use

of network access commands or requests for user authentication, these events are forwarded

to the DIDS director and not handled on the local level (30). Periodic summaries of

security conditions at each host are also sent to the DIDS director.

There is also a local area network (LAN) monitor for the network. This monitor

examines Ethernet packet streams for suspicious port accesses. It can also be used to help

monitor computers on the network that do not contain host monitors. Information about

the security state of the network is forwarded to the DIDS director.

The DIDS director is located at one computer on the network. It receives security

information from all the machines on the network via communication with each individual

host monitor. It also receives input from the LAN monitor.

The DIDS director utilizes a rule-based expert system to reason with the collected

information. Through looking at the network as a complete system, DIDS can find network-

wide attacks that would go unnoticed at the host level. Events that occur on the network

are combined with a context to produce a threat (30). For example, a password change

may not be a notable event, but when everyone changes their password at 3am one morning,

the events are considered threats.

The top level output of the DIDS director is a number from 1 to 100 which indicates

the current security level of the system. A higher number is used to show high levels

of attack or misuse behavior on the system. The system administrator can monitor this

number and query the DIDS director for more information about the notable security

events.

2-9

DIDS has a similar history to the NIDES system. There is only one other user of

DIDS besides the development team. Since this is a DOD funded project, this thesis effort

is designed to provide a better understanding of some of the concepts that are incorporated

into DIDS.

There are three aspects of the DIDS implementation that I wish to explore. First,

DIDS has a requirement of utilizing extensive auditing information. Earlier in this chapter

it was shown that many system administrators do not have extensive auditing capabilities

available, only general accounting information.

This thesis will attempt to use only those features provided by basic UNIX account-

ing. It can be argued that more information is better for good security, but this thesis will

show that most users do not use or even stumble across attack-type commands. These

commands will not appear so frequently that it is impossible to determine an attack from

a non-attack. Security may be kept by monitoring only the commands themselves for

matches with attack signatures.

The second aspect of the DIDS system which this thesis will investigate is how the

users' sessions are treated. Current context is lost in DIDS if a user exits the system.

Therefore a user could set up his attack and log off. Then he could log back on and

complete his attack without detection. The system built for this thesis will preserve the

context of a user across sessions as well as across multiple machines, provided that the user

logs in under the same account name.

The last aspect of the DIDS system relates to the attack signatures. Both the system

implemented in this thesis and the DIDS system are based on a similar set of attack

signatures (25). By independently developing an intrusion detection system based on

the same attack signatures, further insight and understanding into the attack signatures

themselves is achieved.

2.3 Current Security State

The review of intrusion detection systems indicates this area is still in its infancy

period. Intrusion detection systems are not being widely used. A representative from the

2-10

Defense Information Systems Agency's emergency response team stated that most system

administrators use no monitoring or system accounting of any kind, some use UNIX basic

accounting, and only a handful of sites use any type of dedicated intrusion detection system

(19).

The current state of security for many unclassified UNIX-based networks is poor.

Millions of passwords for these systems have already been compromised through the use of

network sniffers (3). If passwords have already been comprised, then there is no alternative

but to use other forms of security to protect the network.

2.4 Summary

Current intrusion detection systems are still very experimental and not widely used.

Most systems were installed at only one research and development site. These tools appear

competent for detecting intruders, but proven security at multiple sites is lacking. Also,

the cost of many of the intrusion detection systems may be prohibitive for implementation

on some networks.

While these systems continue to be developed, unclassified DOD networks around

the globe continue to be easy targets for intruders. The effort of this thesis is to research

and develop a system based on standard UNIX accounting features that can aid system

administrators and CERTs in finding intruders. It is intended to bridge the gap between

no security and an advanced security system.

2-11

III. System Design

This chapter will explain the upper-level design of the intrusion detection system

built for this thesis. A set of goals were determined to define the intended system. With

clear goals, implementation decisions were made to provide the framework on which the

system is built.

3.1 System Goals

The goals in developing the security system are to make it easy to use, portable across

unclassified UNIX-based systems, and effective in detecting network intruders. For ease

of use, the system administrator should not need to interact with the system constantly

to insure correct behavior. He should be able to check his terminal or read a file and

understand the current state of the network.

The next goal for the intrusion detection system is to be portable across UNIX sys-

tems. The implementation of the design needs to consider the resources available to UNIX

system administrators. This portability requirement applies to picking an implementation

language and an accounting or auditing system. Portability is especially important to a

CERT that travels to different computer sites around the globe.

The third goal is for the system to be effective at detecting intruders. There are many

different implementation methods to choose from to accomplish this task. One can monitor

at the packet level and watch every packet going over the network. Another method is

to monitor keystrokes and watch every single keypress by network users. This thesis will

be restricted to techniques that involve analyzing data at the command level. The attack

signatures found in Appendix A are the main focus of this research, so this is the level at

which the security system will process information.

3.2 Implementation Decisions

Four implementation decisions form the basis of the security system design. Each

decision was made after considering all of the intended goals of the system. Design choices

3-1

that needed to be resolved include: obtaining command information, processing command

information, detecting intrusions, and presenting the security data.

3.2.1 Obtaining Command Information. The first implementation decision was

deciding where and how to obtain command information. Chapter II discussed some

different methods of gathering this information. The history files associated with each user

provide a wealth of information including command name, line switches, and file access, but

the shortcomings far outweigh the benefits of using this method. Each window open on a

user's terminal has its own history file associated with it. The time a command is executed

is not recorded so comparing and combining commands from different windows from a

single user would be impossible. This is a necessary feature for detecting time-dependent

attack signatures.

Another method that was explored is the use of a secure shell to automatically record

the commands entered by a user. The commands could be time ordered as they are sent

to a separate file to be recorded. This method has still suffers from some of the problems

mentioned in Chapter II such as the need for additional antialiasing features. It also

requires all system users to use the secure shell.

The method which was finally chosen for obtaining command information is the use

of the /usr/adm/acct log which is processed by the lastcomm command. Although line

switches and files access is not recorded, it does provide a time-ordered list of user-issued

commands. Current UNIX security literature also recommends this log as a good place to

look to monitor command usage (7, 10, 11, 12, 15). Auditing was not used because there

is no standard format available across the different UNIX implementations. One of the

goals for the system is portability, and utilizing system accounting information meets this

goal.

3.2.2 Processing Command Information. The second implementation decision

was deciding what technique to use to process the data presented in the accounting log.

First an expert system based in CLIPS (C Language Integrated Production Systems)

was used to filter the commands against the attack signatures. CLIPS is a programming

3-2

language developed at NASA for developing rule-based systems (14). Powerful pattern-

matching programs can be quickly developed with CLIPS.

This method was determined to be overkill because without command switches or

file names, only a simpler form of pattern-matching was required. Instead of CLIPS, C

code and UNIX shell scripts form the basis of this security system. This aids in making

the system both portable and simple to modify.

3.2.3 Detecting Intrusions. The third implementation decision required focusing

on specific areas of intrusion detection. All the information in the acct log had a potential

for being used. This includes the command, username, CPU time used, and time the

command was issued. After reviewing other intrusion detection systems, it appeared wise

to include features that could be used to detect both known and unknown attack situations.

Known attacks methods are covered by scanning for attack signatures in a method similar

to DIDS. Attack signatures provided by the AFIWC are listed in Appendix A and form

the basis of this security program.

Three techniques are used to find intruders who do not match the attack signatures.

The first technique is to bring password changes to the attention of the system adminis-

trator. A password change in itself is not an attack behavior, but could be the signal of

an intruder taking over an account. This is further detailed in Chapter IV.

Another technique is to monitor commands which utilize enormous amounts of CPU

time. Password cracking programs are favorites for hackers wishing to gain system access.

These programs require a great deal of computing power. The current method of watching

for cracking programs involves a system administrator running the ps command on each

machine he wishes to monitor. This command will list the current processes running on

the computer. It is an impossible task for the system administrator to run this command

on all the network computers throughout the day. The security program developed for this

thesis will provide a much easier way for making this task automatic and painless.

The third technique used to help find intruders is the use of user profiles. The

security system will use a simple method of profiling the commands utilized by each user.

The profiles provide the system administrator with quick breakdown of a user's activity.

3-3

A sample profile can show that Userl ran network, mail, and programming commands

during Day 5. If Userl is not a programmer, the account may have been compromised by

an intruder masquerading as Userl.

3.2.4 Presenting the Security Data. The final implementation decision was de-

ciding how often to process the data and how to present it to the system administrator.

The security system runs in batch mode every twenty-four hours. All the accounting data

gathered during the day is processed at this time and a comprehensive report is mailed to

the system administrator.

The shell scripts can be modified to run every two minutes. This will not increase

the number of missed attacks because the lastcomm command has a built-in memory

capability. All commands executed after a fixed point in time will be recorded. With a

24-hour implementation, this means a fresh log is started every day, and it will grow every

two minutes. By processing the log file every two minutes, execution time will get slower as

the day progresses because the file size will increase. If speed is crucial, then the security

program will need to be modified to save only those commands matching parts of attack

signatures and not every command executed. As the program is setup now, lastcomm has

the necessary memory capability to record commands which executed during any previous

two-minute time span.

By processing data every 24 hours, the network security officer does not have to face

a deluge of data every other minute. If the user needs the system to run in real-time, the

security message would need to be tailored to only report recent attack signature matches.

Even with real-time operation, it is important to remember that a network security officer

may not be able to react in enough time to stop the attack. He may be away from his

terminal for an extended period of time.

This daily reporting method is used by AT&T in a similar network monitoring ap-

plication (6). Stalker, NIDES, and DIDS all provide the ability to produce daily reports

delivered by email to the system administrator. This lessens the workload of the system

administrator by presenting him with a detailed report of all security-related events from

the previous day.

3-4

3.3 Summary

All implementation decisions were made to satisfy the system goals. The system

is designed to be easy-to-use by presenting all computer security information in a daily

electronic message. The system is portable because it is coded in C and UNIX shell

scripts and the accounting data is obtainable on any UNIX network. Finally, the system is

designed to detect intruders by utilizing four different intrusion detection methods. This

upper-level design is explained in more detail in the next chapter.

3-5

IV. Design Implementation

This chapter details the implementation of the top-level design. First, the data

collection method is presented. Next, the data filtering process is reviewed. Third, the

data is analyzed to determine its suitability for the task of scanning for attack signatures.

When this step is completed, intrusion detection features are added. Next, a user profile

method is created to supplement the intrusion detection. Finally, the intrusion detection

methods are combined with the user profile to form a working security system.

4-1 Data Collection

The system uses accounting log data from two computers on a local area network. A

full implementation of this system would require data from all the nodes on the network.

Since this is a research system, only two nodes were monitored. The audit data is gener-

ated by using the lastcomm command as an interface to the acct log which was discussed

in Chapter II. This command produces a list of all the commands issued to the computer.

This listing has eight columns: command name (first eight characters), flags (indicating

whether the command process forked, set-user-id, dumped memory, or was killed), user-

name, terminal type, CPU process time used in seconds, day, date, and time when the

process started. A portion of the accounting log is presented in Table 4.1.

There are many benefits to using this type of accounting information. Multiple users

can be tracked simultaneously. The same user can also be tracked across multiple machines.

Aliased command names are resolved and shown in their true form. Shell scripts are broken

down to the command level and recorded.

4-2 Data Filtering

Data filtering is accomplished through a series of shell scripts utilizing the UNIX cut,

paste, and sort commands. Two different ways to preprocess the data were explored. First

the data was collected on a weekly basis. The accounting information from both computers

was merged into a single file so the information could be analyzed as a mini-network.

4-1

Command Flags Username Terminal Cpu Time Day Date Time

csh S dlandry
in.rlogi S root
clear dlandry ttypl

rn dlandry ttypl

rn dlandry ttypl

rpc.rsta root
in.tname root
rlogin dlandry ttypl

csh F dlandry ttypl

rlogin dlandry ttypl

passnd dlandry ttypl

0.66 sees Mon Sep 26 16:40

0.75 sees Mon Sep 26 16:40

0.02 sees Mon Sep 26 16:47

0.64 sees Mon Sep 26 16:46

0.61 sees Mon Sep 26 16:46

0.02 sees Mon Sep 26 16:45

0.05 sees Mon Sep 26 16:38

0.03 sees Mon Sep 26 16:42

0.00 sees Mon Sep 26 16:42

0.03 sees Mon Sep 26 16:41

0.03 sees Mon Sep 26 16:41

Table 4.1 Unflltered lastcomm generated accounting log.

This file was reduced by uniquely sorting by username. This is necessary to speed the

processing time of the file by the intrusion detection program. Unique sorting eliminates

duplicate lines. This shortens the file drastically while preserving the content.

A good example of this benefit can be drawn from observing the data collected in

the logs. In one case, someone had written a shell script to check the printer status every

three seconds. This resulted in Ipq showing up about 50 times in the accounting logs. After

unique sorting, it would only show up a few times based on processor time used.

The disadvantage to unique sorting is that some instances of user activity are com-

pletely eliminated before being run through the intrusion detection system. If intrusions

are occurring, a system administrator would want to know about all of them.

The current method of filtering involves collecting the data on a daily basis and

sorting (not uniquely) by username and time of day. By dealing with the data on a daily

basis, the length of the file is kept at a manageable level. Sorting by username and time

groups the data from the two machines in a precise manner which is easier for a human

to comprehend. If the output from the intrusion detector is ever in question, the system

administrator can go back to the logs and trace one user's actions step by step, regardless

of how many machines he utilized.

4-2

In Table 4.2, the data from Table 4.1 is now filtered. It is sorted by username and

time of day.

Username Command Cpu Time Day Date Time

dlandry csh 0.66 Mon Sep 26 16:40
dlandry passwd 0.03 Mon Sep 26 16:41
dlandry rlogin 0.03 Mon Sep 26 16:41
dlandry csh 0.00 Mon Sep 26 16:42
dlandry rlogin 0.03 Mon Sep 26 16:42
dlandry rn 0.61 Mon Sep 26 16:46
dlandry rn 0.64 Mon Sep 26 16:46
dlandry clear 0.02 Mon Sep 26 16:47
root in.tname 0.05 Mon Sep 26 16:38
root in.rlogi 0.75 Mon Sep 26 16:40
root rpc.rsta 0.02 Mon Sep 26 16:45

Table 4.2 Filtered lastcomm generated accounting log.

4-3 Feature Selection

Filtering removed the flags and terminal columns from the accounting logs. Also the

host machine names of the two computers that comprise the mini-network is omitted. In

this security system, this additional information was not needed. Eliminating unneces-

sary data decreases the processing time and reduces the amount of space needed to store

accounting information.

These eliminated items would have provided marginal security improvement at best.

The flags provided no more revealing information about a user. The flag which indicates

a user ran a set-user-id program may seem useful for security, but it occurred too often in

normal everyday computer use patterns.

This security system was implemented in an open-lab environment where users show

no real attachment to any particular computer or terminal. The machine name and ter-

minal type could be important in another type of environment such as an office-to-office

network where each user uses his own private workstation.

4-3

The features that were kept include name, command, CPU time, date, and time.

CPU time was determined to be important after reviewing some security incidents such as

those at Columbia University. Password crackers were utilized in three of the five security

breaches at Columbia (1). All three of these attacks were discovered because the password

cracking programs were using large amounts of CPU time (1).

4-4 Data Analysis

A study of UNIX command use is necessary before detecting attack signatures or

organizing a user profile. This analysis insures a firm understanding of the type of data

being collected. The sample data for the study was gathered over a period of ten days.

Fourteen commands emerged as being used by at least half of the 39 users. The results

are listed in Table 4.3.

Percentage of 39 users Command Definition
86 biff Give Notice of incoming Mail Messages
89 cat Concatenate and Display
89 clear Clear the terminal screen
98 csh c-shell
83 date Display or set the date
84 echo Echo arguments to the standard output
88 hostname Set or print name of current host system

68 Is List the contents of the directory
87 quota Display a user's disk storage and usage
85 sed Stream Editor
96 sh Standard UNIX shell
70 stty Set or alter the options for a terminal
86 tty Display the name of the terminal
83 whoami Display the effective current username

Table 4.3 Most common commands in accounting log.

These results are somewhat surprising, because an informal study conducted by the

researcher of twenty random users' history files indicated that other commands would

be more frequently used such as rm (remove a file), cd (change directory), and logout

4-4

(terminate a login shell). The discrepancy arises from the fact that some commands are

issued automatically as the user interacts with the system. So in effect, some commands

are shielded from the user's knowledge. Examples of these automatic commands include

biff, clear, quota, and hostname. The results of the data analysis is encouraging. The most

frequent commands do not match attack signature commands, which indicates that the

security program should be able to find attacks without being sidetracked by unnecessary

noise.

4-5 Intrusion Detection

The intrusion detection part of the security system is a pattern-matching program

written in C. The accounting log is scanned for attack signatures, programs consuming large

amounts of CPU time, and password changes. Attack signatures are matched against one

user at a time.

The time ordering is important in the recognition of attack signatures. The intrusion

system uses the follows semantic highlighted by Kumar and Spafford (16). "For example,

with the "follows" semantics the pattern ab specifies the occurrence of the event a followed

by the occurrence of event b and not (necessarily) a immediately followed by b with no

intervening event" (16). If attack-type commands occur in a non-threatening order then

no attack will be recorded. Scanning for attack signatures is the main method used in

this thesis for detecting intruders. The reader should review Appendix A now to fully

understand how this method was implemented.

The time and command name of the process consuming the most CPU time is

recorded for each user. This feature helps the system administrator in watching the daily

load across the system. It can also be used to quickly find system abuses such as a password

cracker running under different usernames (1, 10).

Another feature useful in detecting intruders is monitoring password changes (21).

When an intruder takes over an account, he frequently changes the password (1, 21).

Password changes are also important with regard to information warfare. A large group of

4-5

users changing their passwords could indicate a hostile takeover of the computer system.

Control of a valuable unclassified system could easily and quickly be lost.

4-6 User Profile

An additional step to aid intrusion detection is the use of a user profile. The profile

attempts to discretely measure each user's UNIX and network proficiency through the use

of certain commands. When a system administrator reviews the security report he can

quickly understand exactly what kinds of tasks a particular user was performing during

the day.

The user profile has nine categories: Common, Unixl, Unix2, Mail, News, Infor-

mation, Editors, Programming, and Internet. Each category is representative of certain

commands and programs found in the UNIX environment. For a given day, a user belongs

to a category or does not. For example, if no programming languages are used, the user's

profile will not contain the Programming category. This binary method of reducing large

amounts of audit information is used in a similar manner for an intrusion detection system

developed at Tulane (17).

The categories were initially determined by reviewing current security literature and

UNIX books. The categories and commands are listed in Table 4.4. The Common category

is made up of all the commands listed in Table 4.3. Most user sessions use at least one

command in this category.

The commands chosen for each category took a couple of weeks to determine. Some

commands were switched to different categories based on the amount of use observed

during the data analysis phase. For example, uname is an information command but it

appeared so often in the accounting logs that it was moved to the Unixl category. The

grep command was also moved from Unix2 to Unixl because of the frequency of use.

The Programming commands were also altered when it was determined that some

commands do not necessarily map directly into the accounting log. For example, the

command to compile a program, c++, is broken down into a few more basic commands

which do not include c++ in any form.

4-6

Group Name Command Type Commands
Common Most frequently occurring biff, cat, clear, csh, date

echo, hostname, Is, quota, sed,
sh, stty, tty, whoami

Unixl Basic UNIX cp, lp, lpq, lpr, mkdir, mv, pwd,
rm, rmdir, uname, grep, more

Unix2 Advanced UNIX chmod, find, awk, ps, mps, kill, sort
Mail Electronic mail handling elm, mail, mailtool, sendmail

Programming Programming languages cpp, ccl, gcc, as,
lisp-full, lisp-fla

Information Information providers finger, rusers, users,
w, who, whois

Internet Network access ftp, telnet, rlogin
Editors Vi and Emacs editors vi, view, vedit,

ex, e, edit, emacs
News Newsgroup readers nn, rn

Table 4.4 Commands contained in user profile categories.

The Unixl category is composed of the basic UNIX commands. These commands

can be found in beginner UNIX books. The Unix2 category is composed of higher-level

UNIX commands. These are commands associated with a more skilled UNIX user and can

be found in advanced UNIX books.

The purpose of segmenting the commands into categories is to provide a quick vi-

sual check for the system administrator. If Airman Jones is an administrative clerk, his

profile would probably include the categories Common, Unixl, Mail, and News. If the

Programming category shows up, a security breach of Airman Jones' account may have

occurred.

The classification of commands is designed to provide individual user profiles that

can be contrasted against other user profiles or the same user for a different time period.

The classification is not intended to cover all possible UNIX commands or programs.

4-7

4-7 Security Report

The intrusion detection techniques are supplemented with user profiling to present a

daily security report to the system security officer. A sample report is presented in Table

4.5.

 Matches trusted hosts Attack Signature dlandry su
*** Password Changed for ********************* dlandry passwd

username Com Unixl Unix2 Hail News Info Ed Pro Int HI-command HI-CPU

dlandry X X X X
userl X X
us er 2 X X X
us er 3 X X X
user4 X X X
us er 5 X X X

X X pcrack 243.95

movbnk.r 376.80

X emacs 4.75

mail 9.30

matlab 2.12

X ftp 1.56

Table 4.5 A portion of a security report.

By reviewing the report, the system administrator or CERT can understand the

activities of each user on the system. In the example above, user dlandry has triggered an

attack signature by using the su command and changed his password. Two users have run

commands consuming large amounts of CPU time. The system administrator may wish

to investigate dlandry first, because he has triggered an attack signature as well as run a

time-intensive program, possibly a password cracker. The security tool developed in this

chapter takes thousands of lines of command information and presents a comprehensive

summary of them. Chapter V will review the testing of the system with actual accounting

information and planned, controlled attacks.

4-8

V. Results

This chapter covers the results produced by running the security system. The two-

computer mini-network was monitored for a period of one month. During this time, the

system collected approximately nine megabytes of accounting data. This includes 145,066

completed commands. During this time span, 109 different users utilized the mini-network.

This chapter has three primary sections. The controlled testing section provides

information about attacks that the researcher set up. The uncontrolled testing section

provides information about attacks that were not staged. The accounting log shortcomings

section describes some difficulties that were discovered during testing.

5.1 Controlled Testing

Each attack signature described in Appendix A was attempted during controlled

testing. The purpose of this phase of testing was to insure the detection program worked

properly at recognizing attack signatures. Some controlled attacks were also performed by

different users.

Both of the techniques used for the rdist attack signature were recognized. However,

the In command was occasionally missed because of a data filtering problem. This is

further discussed in Section 5.3. This problem is minimal because the In command is the

last phase of this attack and the system administrator would already be notified that the

rdist attack has started.

The loadmodule and mount attacks were attempted and detected by the security

program. Trusted host attack signatures were successfully executed and detected. The

xkey attack signature was detected and recorded in the accounting logs, but the actual

attack was prevented by the operating system. The loadkeys attack is similar to the xkey

attack. It was detected and recorded, but the actual attack was unsuccessful.

The crash attack was also attempted but access to this command was restricted on

the network. This restricted access prevents the attack attempt from being recorded in

the accounting log. This is an unfortunate side effect, because attack attempts should be

monitored as well as successful attacks. This is further discussed in Section 5.3.

5-1

Other tests performed during controlled testing were password changes and CPU

time-intensive programs. The security program successfully detected each password change

which was attempted. A CPU time-intensive program which counted infinitely was used

to simulate a password cracking program. It was successfully detected and reported in the

daily security report.

5.2 Uncontrolled Testing

This section covers the free actions by the users of the system. None of the users on

the mini-network knew they were being monitored, so testing bias towards the detection

program was eliminated. If a rogue hacker was lurking on the mini-network, the detection

program was expected to find him. Two attack signatures were triggered: mount and

trusted hosts.

The mount signature was detected three times. All three times were attributed to

the system administrator: two times under his username and once as root.

Both versions of the trusted hosts attack signature were detected. One user performed

the su (assume-user-identity) command four times on a given day. The user was the system

administrator. Eleven rsh (remote shell) commands were issued by three different users.

These triggered signatures are not malicious because the system administrators of

the network allow users to perform trusted hosts commands. However, it should be noted

that current security literature recommends against allowing trusted hosts because this is

a security weakness exploited by the infamous Internet worm of 1988 (5, 9, 12). With only

fifteen uses of trusted hosts commands in one month, it appears these commands were not

being abused by anyone within the mini-network.

Other methods of intrusion detection were tested in addition to attack signatures.

This includes password changes, CPU time-intensive commands, and user profiles. Only 3

of the 109 users changed their passwords. It appears to be a normal rate with no indication

of massive hostile account takeovers.

The recording of CPU time-intensive commands was helpful in understanding daily

network load of completed processes. A few users utilized commands using large amounts of

5-2

CPU time, but all could be attributed to normal computer use. The matlab mathematical

program appeared most often. Matlab program runs frequently consumed between 10,000

and 100,000 seconds of CPU time.

99.06% of all the monitored commands were completed in under 10 seconds. 99.87%

of all the monitored commands were completed in under 100 seconds. These findings offer

statistical evidence that CPU time-intensive processes such as password crackers can be

singled out in this way. This narrows an interested system administrator's search down

from thousands of commands to less than 100.

For example, during the one month of monitoring, 40 people ran processes exceeding

over 10,000 seconds of CPU time. If we assume that the average password cracking program

consumes greater than 10,000 seconds, than 1.33 programs would need to be checked per

day for every 2 computers. Using these percentages for estimation, a system administrator

would only have to check 33 programs for suspicious activity per day for a 50 computer

network. Of course, these numbers will vary according to network use and type of programs

run.

Another feature used to improve security was account profiling. A profile of the

entire system is shown in Figure 5.1. With statistics such as these gathered for the target

network of the security system, a system administrator can more accurately spot trends

which indicate attack-type behavior. For instance, the Internet virus of 1988 disguised itself

under shell command names. If any category besides the Common command category is

recorded for every user on a given day, a virus may be present on the system, worming its

way through user accounts.

The profile of the entire system also shows the original categorization of the com-

mands was well planned. 108 of the 109 usernames were members of the Common command

category (only nobody, a generic system username, was not a member). About half the

users utilized advanced UNIX commands which was less than the number who used ba-

sic UNIX commands. Only two thirds of the users were indicated as using mail. This is

lower than expected, indicating that the possibility that some mail related commands were

omitted from the profile.

5-3

Percentage of 109 users Group Name Command Type

99 Com Most frequently occurring

83 Unixl Basic UNIX

66 Mail Electronic Mail handling

54 Pro Programming languages
48 Unix2 Advanced UNIX
38 Info Information
37 Int Internet
17 Ed Vi and Emacs editors
9 News Newsgroup readers

Table 5.1 Profile of total system activity.

The individual user profile proved to be very helpful in understanding how each user

is utilizing the system. A masquerader was discovered by use of the profile. After reviewing

the security report one day, I noticed the profile of a friend showed the use of programming

languages. I knew he had not been programming lately so I asked him about the profile.

He confessed to loaning his account to another user.

5.3 Accounting Log Shortcomings

During testing some unforeseen problems appeared that hindered the effectiveness

of the detection program. Most can be attributed to the accounting logs, not the detec-

tion program. Three problems are directly connected to the accounting log: mismatched

commands and usernames, hidden commands, and inaccessible commands.

One very subtle but annoying problem is that some commands are not always at-

tributed to the correct username. Occasionally the command is recorded in the log as a

five digit user id number, not the username. It is unclear why this condition occurs. It is

not confined to certain users or certain commands. During the one month of testing, this

error occurred approximately once every four thousand commands.

The most noticeable shortcoming of the accounting logs is the lack of ability to

truly record all commands. This problem prevents detection of four attack signatures:

5-4

expreserve, sync, brute force, and ftp. Part of the problem is that commands which are

built into the system shells are not recorded individually, but as the shell name. The c-shell

(csh) contains commands such as: alias, cd, kill, nohup, set, and setenv.

By hiding under the shell name, these commands cannot be matched against attack

signatures. There are 48 commands in the csh command-interpreter, 24 commands in the

sh command-interpreter, and 55 commands accessible through the ftp command. A similar

situation exists with the crash command.

To illustrate the problem, an example is given in Table 5.2. First the date command

is entered. Next, some common c-shell commands are performed. Finally the session is

ended with another date command.

output produced by history (oldest event to most recent event):

654 date

655 alias jj setenv

656 echo me

657 set
658 setenv

659 unalias jj

660 cd ..

661 cd dlandry

662 chdir logs

663 cd ..

664 date

output produced by last comm (most recent event to oldest event)

date dlandry ttyp2 0.02 sees Fri Oct 28 15:05
sed dlandry ttyp2 0.02 sees Fri Oct 28 15:05
csh F dlandry ttyp2 0.00 sees Fri Oct 28 15:05
hostname dlandry ttyp2 0.00 sees Fri Oct 28 15:05
sed dlandry ttyp2 0.02 sees Fri Oct 28 15:05
csh F dlandry ttyp2 0.00 sees Fri Oct 28 15:05
hostname dlandry ttyp2 0.02 sees Fri Oct 28 15:05

sed dlandry ttyp2 0.05 sees Fri Oct 28 15:05
csh F dlandry ttyp2 0.00 sees Fri Oct 28 15:05
hostname dlandry ttyp2 0.02 sees Fri Oct 28 15:05

date dlandry ttyp2 0.02 sees Fri Oct 28 15:04

Table 5.2 Lost information in lastcomm generated log.

The same data is contrasted by showing the output of the history command followed

by the output of the lastcomm command. By comparing the sections between the date

5-5

commands, you will see that they are not alike at all! The lastcomm command is not

providing information about the actual command which was executed.

A third problem occurs when an intruder attempts to use attack commands that he

does not have access to. The attack is unsuccessful, but the attempt will not be recorded.

However, when a command is accessible to the user, but the user is prevented by his

privileges from exploiting its negative features, the command is recorded. This provides

a limited capability to watch for system probers. A system administrator can see who is

trying some attack signatures, but may completely miss a potential intruder banging on

the locks (7). By not recording all intrusion attempts, some intruders can go unnoticed.

Another problem occurs in the data filtering state. During this stage the accounting

information is ordered by name and then by time. The time recorded is only precise down

to the minute. It is possible for many commands to be executed within the span of a

minute. The UNIX sort command alphabetizes all the commands with a given username

and minute. Thus, the order of commands during a minute may be jumbled.

This problem has no easy solution. It is possible to use another sorting routine,

but when the data is combined from two or more computers it is impossible to determine

which command actually occurred first during a particular minute. An auditing program

should be used that records time to the nearest second. It is also important to keep all the

computers on the network synced to one master clock so events which occur on different

computers can be processed in true temporal order.

5.4 Results Summary

The security system was tested through the use of controlled and uncontrolled tech-

niques. Attacks were detected and the number of false positives was small. Only 18

commands in the 145,066 tested resulted in the matches with attack signatures. Testing

also revealed some shortcomings that were caused by accounting log deficiencies.

5-6

VI. Conclusion

This thesis effort produced and tested a security system for intrusion detection.

The system is designed to help protect unclassified UNIX-based networks from attacks.

It is written in C and UNIX shell scripts which make it portable, understandable, and

modifiable by system administrators. It can automatically identify a majority of the attack

signatures provided by the AFIWC. Its other features, which include user profiles, password

change notification, and a CPU time-intensive process report, aid in finding other intrusive

behavior.

The results of this thesis are characterized by two main contributions to the area

of computer security and intrusion detection. They are detailed in the next section. The

second section of this chapter provides some thoughts about future work in this area.

Finally in the last section the researcher provides some closing comments about computer

security.

6.1 Contributions

The first contribution is that my system demonstrated that even with less than ideal

accounting information, a practical pattern-matching intrusion detection system can be

built to find intrusive behavior. Normal network activity can be effectively filtered for

attacks. There was a small number of false positives recorded, with only 3 of 109 users

being flagged for their command use.

The system testing also showed which of the attack signatures could be detected

using accounting information, and thus provided a better understanding of the signatures

themselves. System administrators and CERTs now know which attacks can be detected

through standard UNIX accounting methods and which attacks can successfully go unno-

ticed.

My practical security tool also found an actual security violation. The user profiling

system provided enough information to determine that a account had been compromised.

The more I used the tool, the more familiar I became with users and their working styles.

6-1

I knew who ran time-intensive commands and which users were more likely to generate

false positives for attack signatures.

The second major contribution is that I found some previously unreported problems

with the accounting log generated by the lastcomm command. These problems hindered

the ability of my detection program to find all attack signatures. This is an important

contribution to the field of computer security, because many references written by knowl-

edgeable people in the areas of computer security and the UNIX operating system are still

emphasizing that the acct log is a suitable place to watch command use (7, 8,10,11,12,15).

The shortcomings discovered during this thesis were not mentioned in any security

reference. All the references which mentioned this form of accounting stated that this

source could be used to monitor command use. The contrasting example in the last chapter

showed how wrong this statement can be.

One book even went so far as to say, "... you can use this command to look for

suspicious commands being run, such as sz /etc/password, or anything having to do with

the /etc/password file" (31). File names are not even stored in this accounting file! I have

already contacted two publishers to encourage them to fix these misleading statements in

their books. One author responded to a message about my accounting logs shortcomings

with, "That stuff is worth clearing up in UPT (his co-authored book - UNIX Power Tools)."

The author of another book also said he would add the information to the next edition.

By getting this information out to security system implementors, greater awareness

is enhanced. This finding will encourage others to use a more reliable forms of auditing.

This is also beneficial to other computer security scholars who may be basing some of their

research on output generated by the lastcomm command.

6.2 Future Work

A good first step would be to test and modify the system to work with a better data

collecting package. This thesis shows that UNIX accounting files generated by the lastcomm

command are not adequate for detecting all attack signatures. The Air Force Information

6-2

Warfare Center would like to see future research dealing with signature detection performed

at the packet level.

Each different implementation of UNIX has a programming capability that allows

programs to read all the Ethernet traffic. SunOS has the Network Information Tap (NIT).

ULTRIX uses the Packetfilter and BSD systems have the Berkeley Packet Filter (BPF)

(8). By monitoring all the packets as they pass along the network, shortcomings such as

those mentioned in Chapter V will be prevented because all commands and file names will

be available.

If packet level information is used, the researcher must perform another data analysis

to determine exactly what kind of data is available from these TCP/IP taps. For instance,

the packets are often in hexadecimal form. If every packet needs to be translated to ASCII

to compare to the attack signatures, the intrusion detector may not be able to keep pace

with the amount of packets on the network. It may be faster for the researcher to encode

all the signatures into hexadecimal to do the comparison.

Also, any future systems derived from this thesis should be able to handle all of the

Ethernet forms (NIT,BPF,etc). This will keep the system portable across UNIX-based

networks for use by a Computer Emergency Response Team. In addition, a CERT will

need a security program implementation which is close to real-time. A memory file can

be added to the data filtering stage to save attack-type commands from earlier command

scans.

After that step is completed, the system should be expanded from a two computer

mini-network to a typical large scale network of fifty or sixty machines. This would be a

good investigation to see if the system scales well to large amounts of data. It would also

be interesting to see if the data collected for the mini-network (command usage, attack

signature detections, false positives) was a good sample of the activity present on the larger

network.

To steer all future work in this area in the right direction, it would be beneficial

for the Air Force and the rest of DOD for the Air Force Information Warfare Center to

set up a dedicated research program at AFIT to explore the future of intrusion detection.

6-3

With a continual program centered on a studying the various aspects of computer security,

graduate students can build on each other's work to produce tools and techniques for

securing Air Force systems. As distributed systems become more widespread in the future,

a faculty member with experience in securing these types of systems should be added to

guide this research.

6.3 Closing Thoughts

Intrusion detection will become even more important as the world gets wired online.

More people connected through heterogeneous systems make the odds of being attacked

greater each day. Investment in intrusion detection systems and further research in this

area will keep the network intruders off the front pages of the newspapers and prevent

compromise of sensitive computing resources.

6-4

Appendix A. Attack Signatures

The purpose of this appendix is to present the attack signatures that the security

program was designed to find. Each signature is explained and then followed by the method

used to detect it. The source for this appendix is a fax from the Air Force Information

Warfare Center written by Dr. E. Eugene Schultz and Marvin J. Christensen (25).

A.l The rdist Attack

The rdist command is a remote file distribution program. It can be exploited using

two different techniques. The first step for both techniques begins with the attacker issuing

the rdist command. In the first technique, the attacker erases a file named rdist* and creates

a link to this file. In the second technique, the attacker changes the path to the file by

moving directories.

1. rdist
2. rm rdist*
3. In (target file) rdist*

1. rdist
2. mv (target directory) (some directory)
3. mv (another directory) (target directory)

Table A.l rdist Attack Signature.

The detection program searches for the rdist, rm, In, and mv commands. The last

three commands will only be reported if they are preceded by the rdist command.

A.2 The crash Attack

The crash command is used to examine system images. An attacker can crash a live

system and search the memory for passwords. It can be exploited using three different

techniques. The first step of the three techniques is to issue the crash command. In the

first technique, the attacker performs a shell escape and issues the strings command. In

the second technique, the attacker issues the rd command. In the third technique, the

A-l

attacker uses the od command to dump a file into octal, decimal, hexadecimal, or ASCII

form.

1.
2.
3.

crash
!sh
strings /dev/mem

or

1.
2.

crash
rd

1. crash
2. od

Table A.2 crash Attack Signature.

The detection program searches for the crash and strings command. The rd and

od command are not searched for, because the attacker must issue these while the crash

command is running. The attacker must be within the crash process to issue od and rd,

and this prevents these commands from appearing in the accounting log.

A.3 The loadmodule Attack

The loadmodule command is used by Open Windows to install loadable drivers into the

UNIX kernel. It is used by attackers to run a Trojan Horse program with privileges. After

the Trojan Horse is created, environment variables must be changed and the loadmodule

command issued.

1. Create Trojan Horse.
2. Modify environment variables.
3. loadmodule

Table A.3 loadmodule Attack Signature.

The detection program searches for loadmodu (loadmodule gets truncated to eight

characters by the accounting log).

A-2

A.4 The expreserve Attack

The expreserve attack relies on an editor vulnerability which allows the attacker to

link to any file. First an editor must be started with the commands vi, view, vedit, ex,

edit, or e. Next the attacker performs a shell escape. The attacker switches to the target

directory and links to the target file. Finally the attacker kills the editor process.

1. vi, vien, vedit, ex, edit, or e
2. !sh
3. cd (target directory)
4. In (target file) (target directory)
5. kill editor process

Table A.4 expreserve Attack Signature.

The detection program cannot detect this type of attack. The accounting log gen-

erated by lastcomm does not record cd (change directory) or kill. These commands are

hidden under the csh command which does appear in the log. With only editor commands

and the link command to search for, this attack signature would generate too many false

positives. It was not included in the detection program.

A.5 The sync Attack

The sync command is used to force changed data blocks to disk. The sync account

can be exploited by an attacker to obtain unauthorized privileges. This attack signature

has three techniques. The first technique is to compile and link a Trojan Horse program.

The second technique is to set an environment variable and then su to the sync account.

The third technique is to set an environment variable and then login to the sync account.

The detection program cannot detect this type of attack. This attack relies heavily

on using specific command line switches. This type of information is not recorded in

the accounting logs. The commands cc and Id may be scanned for, but they occur quite

frequently any time someone compiles a C language program. The setenv command is

hidden by the csh command in the accounting log. This attack signature was not included

in the detection program.

A-3

1. cc -c -R -pic
2. Id -assert pure-text

1. setenv LD_
2. su sync

1. setenv LD_
2. login -p sync

Table A.5 sync Attack Signature.

A.6 The trusted hosts Attack

The trusted hosts attack was part of the famous Robert T. Morris Internet worm (9).

An attacker uses another's account to access a specific machine which the account trusts.

Trust indicates the machine may be accessed without having to type in a password. There

are two techniques. In the first technique, the attacker must first enter the su command

to switch to a new user id. Then he issues the rsh command to execute a command on a

remote system. The second technique is the same as the first, but without the su command.

1. su (acct)
2. rsh (target) (command)

or

1. rsh (target) (command)

Table A.6 trusted hosts Attack Signature.

The detection program can find this attack by searching for the su and rsh commands.

The trust environment is important for use of these commands. Some systems permit

users to utilize these commands, but security experts recommend against free use of these

commands (2).

A-4

A.I The xkey Attack

The xkey attack can be used to steal keypresses from a shell window. The attacker

must have access the X-server on the target machine. After achieving access, the xkey

command is used.

1. xkey (host):(number)

Table A.7 xkey Attack Signature.

The detection program can find this attack by searching for the xkey command.

The best protection against this attack is probably through server refusal to access other

computers' Xlib directories.

A.8 The mount Attack

This attack signature was mislabeled in my source as the anonymous ftp attack

(25). I will call it the mount attack. "In this attack pattern, the attacker first pings

hosts, then executes rpcinfo to determine which hosts are NFS servers. The attacker next

executes showmount to discover which file partitions can be exported, and finally, mounts

the desired file partition" (25).

1. ping
2. rpcinfo
3. showmount
4. mount

Table A.8 mount Attack Signature.

The detection program searches for the mount command. The other commands show

up in the accounting log, but are not important enough to scan for. Schultz states that

the first three commands can be executed weeks or months before the attack is completed

with the mount command (25). Normal users will not use the mount command, so the

detection program searches for only the last phase of this attack.

A-5

A.9 The brute force Attack

The brute force attack occurs when an attacker attempts to gain system access by

guessing the appropriate username/password combinations.

1. ftp, telnet, or rlogin
2. Guess username/password
3. Repeat 1 and 2.

Table A.9 brute force Attack Signature.

The detection program does not look for this attack signature. Not enough informa-

tion is available in the accounting logs (such as the success or failure of a given command).

Other system administrator utilities report some types of brute force attacks (see Figure

2.1).

A. 10 The ftp Attack

The attacker executes mkdir, chmod, or mknod to create directories or change per-

missions for use in a later attack.

1. ftp
2. mkdir, chmod, or mknod

Table A. 10 ftp Attack Signature.

The detection program does not look for this attack signature. The ftp command can

be found through scanning, but mkdir, chmod, and mknod are omitted from the accounting

log because they are used during a ftp session.

The best defense against this attack is probably to disallow these commands inside

of ftp. The researcher tried two different ftp implementations. One allowed none of these

commands to be used. Another allowed only mkdir to be executed.

A-6

A. 11 The loadkeys Attack

This attack is not mentioned by Schultz or any other reference. It was independently

uncovered by the researcher. The loadkeys attack is a denial of service attack. The at-

tacker accesses a target system and redefines the keyboard. If an attacker can redefine

the keyboard to all Z's, then the user has no choice but to reboot the computer. Usually

dumpkeys is used first to capture the current keyboard definitions to a file. Then the file

is maliciously edited and loaded back to the target computer.

1. dumpkeys (file)
2. loadkeys (file)

1. loadkeys (file)

Table A. 11 loadkeys Attack Signature.

The detection program searches for the dumpkeys and loadkeys commands.

A. 12 Summary

Seven of the eleven attack signatures may be detected through the use of the ac-

counting logs. It is important for a system administrator to understand which attacks can

be detected and which can go unnoticed.

A-7

Bibliography

1. Baran, Fuat, et al. Security Breaches: Five Recent Incidents at Columbia University.
Tech Report., Center for Computing Activites: Columbia University, 1990.

2. Brand, Rüssel L. Coping with the Threat of Computer Security Incidents - A Primer
from Prevention through Recovery. Technical Report, June 8 1990.

3. Brewin, Bob. "DOD to brief White House on hacker attacks," Federal Computer
Week (25 July 1994).

4. Brewin, Bob and Elizabeth Sikorovsky. "Hackers storm DOD nets," Federal Computer
Week (11 July 1994).

5. Cheswick, Bill. An Evening with Berferd in Which a Cracker is Lured, Endured, and
Studied. Technical Report, AT&T Bell Labratories.

6. Cheswick, William R. and Steven M. Bellovin. Firewalls and Internet Security -
Repelling the Wily Hacker. Addison-Wesley Publishing Company, 1994.

7. Curry, David. Improving the security of your UNIX system. Technical Report, SRI
International, April 1990.

8. Curry, David. UNIX System Security: a guide for users and system administrators.
Reading, MA: Addison-Wesley Publishing Company, Inc., 1992.

9. Eichin, Mark W. and Jon A. Rochlis. With Microscope and Tweezers: An Analysis of
the Internet Virus of November 1988. Technical Report, Cambridge: Massachusetts
Institute of Technology, 1989.

10. Farrow, Rik. UNIX System Security - How to Protect Your Data and Prevent Intrud-
ers. Addison-Wesley Publishing Company, Inc., 1991.

11. Ferbrache, David and Gavin Shearer. UNIX Installation - Security and Integrity.
PTR Prentice Hall, 1993.

12. Garfinkel, Simson and Gene Spafford. Practical UNIX Security. Sebastopol, CA:
O'Reilly and Associates, Inc., 1991.

13. Garvey, Thomas D. and Teresa F. Lunt. "Model-Based Intrusion Detection." 14th
National Computer Security Conference. October 1-4 1991.

14. Giarratano, Joseph and Gary Riley. Expert Systems - Principles and Programming.
PWS Publishing Company, 1994.

15. Hubley, Mary and Gary Brader. Securing UNIX Systems. Technical Report, Datapro
Reports on Information Security, January 1994.

16. Kumar, Sandeep and Eugene H. Spafford. An Application of Pattern Matching in
Intrusion Detection. Technical Report, Purdue University, June 17 1994.

17. Lankewicz, Linda and Mark Benard. "Real-time Anomaly Detection Using a Nonpara-
metric Pattern Recognition Approach." Computer Security Applications Conference.
December 1991.

BIB-1

18. Lister, Justin, "Intrusion Detection System Review." Post to the Intrusion Detection
Mailing List, August 1994.

19. Lunt, Teresa, "Intrusion Detection Statistics." Electronic Mail Message, September
1994.

20. Lunt, Teresa, "NIDES." Post to the Intrusion Detection Mailing List., 1994.

21. Lunt, Teresa F. "Automated Audit Trail Analysis and Intrusion Detection: A Survey."
Computer Security Conference Proceedings. 1988.

22. Marshall, Victor H. Intrusion Detection in Computers. Technical Report, Booz,
Allen, and Hamilton Inc., January 1991.

23. McCarron, John. "Applications of Knowledge Based Systems Techniques to Detect
Computer Systems Intrusions." 13th National Computer Security Conference. Octo-
ber 1-4 1990.

24. Roth, Kristina, "Thesis Feedback." Electronic Mail Message, October 1994.

25. Schultz, E. Eugene and Marvin J. Christensen. "Distributive Intrusion Detection
System (DIDS), Petri Net Diagrams, Deliverable 2.1.b.3." March 1994.

26. Schultz, E. Eugene, et al. "Computer Emergency Response Teams: Lessons Learned."
13th National Computer Security Conference. October 1-4 1990.

27. Sebring, Michael M., et al. "Expert Systems in Intrusion Detection: A Case Study."
11th Computer Security Conference Proceedings. 1988.

28. Smaha, Steve, "Using Non-Audit Data for Misuse Detection." 14th Intrusion Detec-
tion Workshop, November 1994.

29. Snapp, S.R., et al. "Detecting Intrusions Through Attack Signature Analysis." Law-
erence Livermore Laboratory, 11 October 1991.

30. Snapp, Steven R., et al. "DIDS (Distributive Intrusion Detection System) - Mo-
tivation, Architecture, and An Early Prototype." 14th National Computer Security
Conference. October 1991.

31. Southerton, Alan and Jr. Edwin C. Perkins. The UNIX and X Command Compendium
- A Dictionary for High Level Computing. John Wiley & Sons, Inc., 1994.

BIB-2

Vita

Lieutenant David Robert Landry was born in Wiesbaden, Germany on 3 May 1971.

He received the IEEE Computer Society second place award at the 40th International

Science and Engineering Fair in 1989. In 1993, he graduated from the United States Air

Force Academy with his undergraduate degree in Computer Science. Following graduation

from the Air Force Institute of Technology, Lieutenant Landry will work as a member of

the Software Engineering Division of the Air Force Wargaming Institute at Maxwell Air

Force Base, Alabama.

Permanent address: 45887 Cabin Branch Drive
Sterling, VA 20164

VITA-1

